Parkview Health Parkview Health Research Repository

Pharmacy

Parkview Research Center

12-2022

Evaluation of Intravenous Loop Diuretic Use in Acute Decompensated Heart Failure in a Community Hospital

Catherine Eichler PharmD Cole Luty PharmD Kris Howard PharmD, AACC

Follow this and additional works at: https://researchrepository.parkviewhealth.org/pharma
Part of the Pharmacy and Pharmaceutical Sciences Commons

PARKVIEW HEALTH

OBJECTIVE

To characterize the use of intravenous loop diuretics in patients hospitalized with fluid overload secondary to acute decompensated heart failure (ADHF) within the heart failure service of a community hospital.

BACKGROUND

- Loop diuretics cause water excretion renally by inhibiting the sodium-potassiumchloride cotransporter in the ascending loop of Henle to reduce sodium and chloride reabsorption.¹
- The loop diuretic drug class includes furosemide, bumetanide, torsemide and ethacrynic acid.¹ Furosemide is the most utilized loop diuretic in heart failure.²
- Furosemide, bumetanide, and torsemide are on formulary for this facility.
- Prompt treatment with loop diuretics is recommended for fluid overload in ADHF by the 2022 AHA/ACC/HFSA Heart Failure Management Guidelines.²
- High doses of loop diuretics have been associated with adverse effects such as acute kidney injury (AKI) and hypokalemia.¹
- There is lack of data on the optimal regimen for empiric diuresis in ADHF.^{3,4}

METHODS

• This is an Institutional Review Board (IRB) approved retrospective study from September 1, 2020 to December 31, 2021.

Inclusion Criteria		Exclus
 ≥ 18 years old ADHF diagnosis Continuous infusion or more 1 bolus dose of loop diuretic 	than	 Chronic kidney stage 5 receiv Cirrhosis Thoracentesis
Primary Endpoints:	Secondar	y Endpoints:
 Frequency of the initial loop diuretic Description of subsequent regimen adjustments 	 Urine ou IV loop Total loo Addition AKI: a S 	atput diuretic duration op diuretic duration al IV non-loop diu SCr increase from l

RECITTC

RESULIS			
Table 1: Patient Demographics			
Total patient, n	599		
Average age, years ± SD	71.5 ±13.4		
Female sex, n (%)	223 (37)		
Ejection fraction, mean ± SD	40.1 ± 16.2		
Home loop diuretic prior to admission, n (%)	322 (54)		
CrCl at admission, mean ± SD	58.7 ± 35.2		
Past medical history CKD Stage 1-4, n (%)	371 (62)		

Evaluation of Intravenous Loop Diuretic Use in Acute Decompensated Heart Failure in a Community Hospital Catherine Eichler, PharmD; Cole Luty, PharmD, BCPS; Kris Howard, PharmD, AACC

Parkview Regional Medical Center Fort Wayne, Indiana

RESULTS

- sion Criteria
- y disease (CKD) ving dialysis
- during admission

aretics administered baseline of 0.3 mg/dL ithin 7 days level < 3.5 mEq/L

IV loop diuretic duration (d Total loop diuretic duration Frequency of transition to Additional IV non-loop diur

Table 5: Incluence of Side Effects		
Acute kidney injury, n (%)	86 (14)	
Hypokalemia, n (%)	237 (40)	

Figure 5: Occurrence of AKI in CKD Stage 1-4 vs no CKD (n=86)

	70%	
_	/0/0	
Y	60%	
A		
Ť	50%	
0	40%	
- M	1070	
Ĕ	30%	
e	2001	
פ	20%	
Q	100%	
2	1070	
	0%	
	0 /0	

DISCUSSION & CONCLUSIONS

- Majority of regimens following once doses were intravenous and included furosemide, following trends in practice and guideline recommendations.²
- Highest average urine output was associated with bumetanide IV 9mg; however, it wasn't highly utilized. 24 hour doses of furosemide IV 80mg, 120mg, and 160mg account for \sim 50% of regimens with similar urine outputs. Initial regimens could be streamlined to equal those 24 hour furosemide doses.
- Minimal usage of additional non-loop IV diuretics implies the loop diuretic regimens utilized provided adequate congestion management.
- Incidence of hypokalemia warrants further investigation of potassium supplementation for specific loop diuretic regimens.
- Higher incidence of AKI in CKD indicates additional monitoring and conservative loop diuretic dosing may be appropriate.
- This study was limited by inconsistent urine output documentation and patientspecific nature of loop diuretic dosing in ADHF.
- To conclude the best loop diuretic regimen(s), further evaluation of in-patient dosing compared to home diuretic dosing and additional diuresis efficacy endpoints such as clinical signs of congestion and/or weight changes is needed.

- Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. J Am Coll Cardiol. 2022;79 (17) e263–e421 Felker GM, Lee KL, Bull DA, et al. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med. 2011 Mar 3;364(9):797-805. doi:
- 10.1056/NEJMoa1005419.

24 Hour Dose of First Regimen Adjustment

Furosemide

Bumetanide

RESULTS				
Table 2: Therapy Characteristics				
on (days), mean ± SD	3.62 ± 2.72			
ation (days), mean ± SD	4.98 ± 3.75			
n to PO loop diuretic, n (%)	422 (72)			
o diuretic administered, n (%)	18 (3)			
Table 3: Incidence of Side Effects				
(%)	86 (14)			

CKD Diagnosis

• There were 36 initial regimens, underscoring the need for standardization. Top 10 most utilized regimens account for 87% of total encounters.

REFERENCES

Brater DC, Ellison DH. Loop diuretics: Dosing and major side effects. In: UpToDate, Post TW (Ed), UpToDate, Waltham, MA. (Accessed on October 13,

4. Frea S, Pidello S, Volpe A, et al. Diuretic treatment in high-risk acute decompensation of advanced chronic heart failure-bolus intermittent vs. continuous infusion of furosemide: a randomized controlled trial. Clin Res Cardiol. 2020 Apr;109(4):417-425. doi: 10.1007/s00392-019-01521-y

> Disclosure The authors of this presentation have the following to disclose concerning possible financial or personal relationships with commercial entities that may have a direct or indirect interest in the subject matter of this presentation: Catherine Eichler: Nothing to disclose | Cole Luty: Nothing to disclose | Kris Howard: Nothing to disclose

> > | | | 2022 ASHP Midyear Clinical Meeting / Las Vegas, Nevada | |