Improved Resection Rates in Locally Advanced Pancreatic Cancer (LAPC) Following EUS-FNI of Large Surface Area Microparticle Paclitaxel (LSAM Pac)

Neil Sharma MD
C Max Schmidt MD
Sushil Jain MD
Joseph McCollom DO
Holly Maulhardt BS

See next page for additional authors

Follow this and additional works at: https://researchrepository.parkviewhealth.org/oncol

Part of the Gastroenterology Commons, and the Oncology Commons
Authors
Neil Sharma MD; C Max Schmidt MD; Sushil Jain MD; Joseph McCollom DO; Holly Maulhardt BS; Shelagh Verco BSc, PhD; Mariajose Rojas MD; Saurabh Gupta MD; Chetan Mittal MD; Christina Zelt; Ashley Rumple RN, BSN; James Verco BS, CCRA; Abhilash Perisetti MD; and Gere S. diZerega MD
Machine Learning for Classification of Indeterminate Biliary Strictures During Cholangioscopy
Bachur Chandraor, MD,1 Hi-Yei Hie, MSc,1 Venkata Akhaintola, MD,1 Michael Bejjani, MD,1 Daniel Sivara, MD,1 Sooraj Tawasra, MD, MPH,2 Christopher J. DaMio, MD,1 Arvind J. Trivedi, MD,1 Amar Manvar, MD,1 Takao Doi, MD, FACG,3 Adam Stryka, MD, PhD,4 Mahesh K. Goenka, MD, DM, FACGP,5 Jong Ho Moon, MD, PhD,6 Vladimir Kardashian, MD,7 Amrita Sethi, MD,8 Anthony Yuen Bun Teoh, MD,9 Raymond Shing Yan Tang, MD,9 James Y. Lau, MD,9 Bangsian Kerkmeijer, MD,9 Ting Leong Ang, MBBS, MRCGP,9 Amit P. Maydeo, MD,9 Emily R. Ionica, MD,9 Arthur J. Kaff, MD,9 Paul Cecena, MD,10 Nam Q. Nguyen, MBBS, MPhil,9,11 Aisun X. Zhou, MD,9,11 Limel D’Souza, MD,9,11 Jonathan M. Buscaglia, MD,12 Vivek Kaul, MD, FACG,12 Carlos Robles-Medranda, MD,12,13 Claudia Zilli, MD,14 Vicente Pons-Beltrán, MD, PhD,15 Benjamin Bick, MD, MSCR,16 Jonathan M. Buscaglia, MD,12 Vivek Kaul, MD, FACG,12 Carlos Robles-Medranda, MD,12,13 Claudia Zilli, MD,14 Vicente Pons-Beltrán, MD, PhD,15 Benjamin Bick, MD, MSCR,16 Stuart Sherman, MD,17 Three Mountains Medical, MD, PhD,17 MBBS,18,19 Amit P. Maydeo, MD,20 Swaroop Vedula, MD,20 Gregory D. Hager, PhD,20,21 Mouna A. Khaddab, MD,22 Johns Hopkins University Hospital, Baltimore, MD,22 UC Davis, Sacramento, CA,22 Xian School of Medicine at Mount Sinai, New York, NY,22 Long Island Jewish Medical Center, Northwell Health System, New Hyde Park, NY,22 Montefiore Medical Center, Old Westbury, NY,22 Tokyo Medical University Hospital, Tokyo, Tokyo, Japan,23 University of Pittsburgh Medical Center, Pittsburgh, PA,23 Institute of Gastrosciences, Apollo Glenesques Hospital, Kolkata, West Bengal, India,23 Soon Chun Hyang University School of Medicine, Seoul, Seoul-Gyeonggi-do, Republic of Korea,23 Barnes-Jewish Hospital at Washington University in St. Louis, St. Louis, MO,24 Columbia University Medical Center, New York, NY,24 Prince of Wales Hospital, Shu Tin, Hong Kong,25 Chulalongkorn University Hospital, Bangkok, Pathum Thani, Thailand,26 Changi General Hospital, Singapore, Singapore,27 Balboa Institute of Digestive Sciences, Mumbai, Maharashtra, India,27 University of Colorado Anschutz Medical Campus, Aurora, CO,28 Royal Prince Alfred Hospital, Sydney, New South Wales, Australia,29 Royal Adelaide Hospital, Adelaide, South Australia, Australia,30 Stony Brook University Hospital, Stony Brook, NY,31 Stony Brook University Hospital, Stony Brook, NY, University of Rochester Medical Center, Strong Memorial Hospital, Rochester, NY, Institute Ecuatoriano de Enfermedades Digestivas (ICEED), Guayaquil, Guayas, Ecuador,32 Endoscopy Unit G.Fucito University Hospital of Salerno, Salerno, Campania, Italy,33 Hospital Universitario, Politecnic Le Fe, Valencia, Comunidad Valenciana, Spain,34 Indiana University School of Medicine, Indianapolis, IN, Yale New Haven Health System Yale Center for Pancreatitis, New Haven, CT,35 Yale New Haven Hospital, New Haven, CT.35

Introduction: Indeterminate biliary strictures remain a diagnostic challenge despite advances in radiologic, endoscopic, and laboratory testing. More than 25% of patients presumed to have malignant strictures during cholangioscopy show benign pathology after major surgical intervention. Interpretation of the visual findings during cholangioscopy remains challenging even for experienced endoscopists. We therefore aimed to develop a software tool that classifies indeterminate biliary strictures as benign or malignant using both cholangioscopy images and clinical data.

Methods: Our dataset included cholangioscopy images and clinical data from a retrospective cohort of patients undergoing cholangioscopy for evaluation of indeterminate biliary strictures. We annotated images for abnormal features suggestive of malignancy, including papillary mass, dilated and tortuous vessels and ulceration. We trained a convolutional neural network (CNN) based on ResNet-18 to detect presence of abnormal image features and tested it in patients of independent centers (external validation). We used multiple outputation to analyze the patient as the unit of analysis and estimated accuracy, sensitivity, specificity, positive and negative predictive values (PPV and NPV), and area under the receiver operating characteristic curve (AUC).

Results: A total of 1,371,605 cholangioscopy images were obtained from 528 patients at 25 centers (13 North America, 7 Asia, 2 Europe, 2 Australia, 1 South America). Our training set included data from 254 patients at 14 centers, and the test set included data from 95 patients at 8 other independent centers. Table 1 shows the proportion of patients with abnormal cholangioscopy image features according to their final diagnosis. For detection of abnormal image features, the CNN showed a sensitivity of 0.81 (95% confidence interval: 0.72 to 0.91), specificity 0.90 (0.86 to 0.97), PPV 0.93 (0.88 to 0.98), NPV 0.77 (0.66 to 0.88), and AUC 0.86 (0.80 to 0.92).

Conclusion: Using data from a large cohort of patients across the world, we trained and externally validated a CNN that can detect key cholangioscopy image features suggestive of malignancy and thus support intra-procedural decision-making. Our next step is to enhance the CNN with clinical data and evaluate it for diagnosing and predicting malignancy in indeterminate biliary strictures. This can improve clinical outcomes through accurate diagnosis of disease and prevention of unwarranted surgical interventions.
were administered 1 month apart. The aim was to determine safety and tolerability of LSAM pac when injected directly into the lesion and assess the impact on the lesion by means of imaging assessments every 3 months following first injection. Parkview Cancer Institute (Pf Wayne, IN) enrolled 13 of the 22 subjects in the second phase of the trial.

Results: There were no safety concerns identified. Of the 13 subjects from Parkview, seven (54%) were restaged becoming eligible for surgery following LSAM pac injections. Of the seven, 6 proceeded to surgery, 1 opted to receive alternate treatment. Five resulted in successful R0 resections, the 6th resulted in R1 resection (Table 1). Multivariate immunofluorescence analysis of biopsy samples from pre-LSAM pac and surgical specimens in 5 subjects (one pending analysis) demonstrated an increase in the density of adaptive and innate immune cells and an increase in NK cells in the tumor microenvironment, and a decrease in the myeloid/mDSC populations.

Conclusion: Approximately 30% of pancreatic cancer patients are considered non-surgical due to involvement of local arterial or venous structures. Existing treatment options are relatively ineffective in producing changes in the tumor to allow for conversion, and surgery still provides the best outcome. We present early findings in a series of 13 subjects with a conversion rate of 54%. Surviving the need of increasing toxicities associated with systemic chemotherapy. Due to these promising results, the clinical trial is ongoing, enrolling subjects to receive up to 4 injections one month apart.

S5

Identification of Patients at Risk for Pancreatic Cancer in a 3-Year Timeframe Based on Machine Learning Algorithms in the Electronic Health Record

Wenxun Zhu, MD,1,2 Mark B. Pochapin, MD,2 Apyphanyaphong Yindalon, PhD,2 Narges Razavian, PhD,2,3 Tamas A. Gonda, MD,3

1New York University, New York, NY; 2New York University School of Medicine, New York, NY; 3New York University Langone Medical Center, New York, NY.

Introduction: Early detection of pancreatic cancer (PC) remains challenging largely due to the low population incidence and few known risk factors. However, screening at-risk populations and detection of early cancer has the potential to significantly alter survival. We used an Electronic Health Records (EHR) based large-scale machine learning algorithm to identify disease codes that are associated with the development of PC at least 3 years before diagnosis and developed a predictive model to identify patients at risk for PC 27-33 months later.

Methods: EHR data was analyzed between 2000 and 2021 and individuals with at least 3 years of continuous presence in the database were included, whereas a second model only those without known prior pancreatic diseases were excluded. Among demographic and 19,904 disease variables 27-33 months prior to PC diagnosis, we used the P-value of associations to select significant variables (cut-off P-value < 0.05) and trained a logistic regression model. The final predictive performance was tested on a hold-out validation cohort.

Results: 544,000 patients were analyzed. 2091 patients with PC were matched to 8364 cancer-free patients. We identified 73 variables with significant association of development of PC, including pancreatic cysts, diabetes, family or personal history of breast cancer, and chronic pancreatitis (ranked results and statistical analysis are shown in Table 1). These variables were selected for the regression model, which we trained in over 541,602 patients. In our second model, in patients without prior pancreatic diseases, 541,277 patients were included. The area under the receiver operating characteristic curve (AUROC) were 0.790 [0.772, 0.809] and 0.779 [0.759, 0.789] in the two populations and detection of early cancer has the potential to significantly alter survival. We used an Electronic Health Records (EHR) based large-scale machine learning algorithm to identify disease codes that are associated with the development of PC at least 3 years before diagnosis and developed a predictive model to identify patients at risk for PC 27-33 months later.

The unadjusted odds ratios of PanVeWAS on the case-control matching and adjusted odds ratios of two models on the overall cohort are listed. Note that "NA" exists in model 2 because patients with known prior pancreatic diseases were not included in this study. The statistically significant features under Bonferroni correction are marked *** (P-value < 0.0001), ** (P-value < 0.001), * (P-value < 0.01), and + (P-value < 0.05).

Conclusion: In a robust EHR-based analysis, we identified a list of diagnostic variables associated with pancreatic cancer development in a 3-year time frame and developed a model to identify patients at risk. Although the inclusion of additional variables such as laboratory results and radiomics will likely improve the accuracy of the model, the current algorithm will allow us to develop an EHR-based identification of patients at risk for PC.

S4

Time-Trends, Outcomes and Risk Factors of Portal Vein Thrombosis in Acute Pancreatitis: A Propensity-Matched National Study

Rajat Garg, MD, Amandeep Singh, MD, Hassan Siddiki, MD, Tyler Stevens, MD, John Vargo, MD, Prabhleen Chahal, MD.

Cleveland Clinic Foundation, Cleveland, OH.

Introduction: Portal vein thrombosis (PVT) is a rare complication of acute pancreatitis (AP) and might be associated with worse outcomes. We aimed to study trends, outcomes, and risk factors of PVT in AP patients.

Methods: The National Inpatient Sample database was utilized to identify the adult patients (>18 years) with primary diagnosis of AP from 2004 and 2013 using International Classification of Disease, Ninth Revision. Patients with and without PVT were entered into a nearest neighbor 1:1 variable ratio propensity-matching model on baseline variables. Outcomes assessed included need for percutaneous drainage, surgery, in-hospital mortality, acute kidney injury (AKI), shock, need for mechanical ventilation, total cost, and length of stay (LOS). A multivariate logistic regression analysis was done to identify risk factors of PVT in AP.

Results: Amongst the total of 2,389,337 AP cases, 7,385 (0.3%) had associated PVT. The overall mortality of AP decreased throughout the study period whereas the mortality of AP with PVT remained stable (1.57%, P-trend = 0.3) (Figure 1). After propensity matching, 7,385 and 7,400 patients with and without PVT were assessed. Compared to non-PVT patients, AP with PVT patients had significantly higher in hospital mortality (3.3% vs 1.3%), AKI (13.5% vs 0.7%), shock (2.2% vs 0.6%) and need for mechanical ventilation (0.7% vs 2.8%) (P < 0.001 for all). AP with PVT also had significantly higher cost of hospitalization ($4881.1–14025 vs $38,345 < 57,942; P < 0.001) and length of stay (12.3± 15.4 vs 5.7± 7.1, P < 0.001) as compared to patient without PVT. Lower Age (Odd ratio [OR], 95% CI, 0.99-0.99, Female [OR 0.75], African Americans [OR 0.57], Hispanics [OR 0.62], gallstone pancreatitis [OR 0.71, 95% CI, 0.64 - 0.76], obesity (OR 0.75, 95% CI 0.68 - 0.82), anti-platelet (OR 0.51, 95% CI 0.41 - 0.61) had significantly lower risk of PVT whereas alcoholic pancreatitis (OR 1.45, 95% CI, 1.38 - 1.54) cirrhosis (OR 1.73, 95% CI 1.5 – 1.92), Charlson Comorbidity Index ≥2 (OR 1.85, 95% CI 1.73 – 1.97) and coagulopathy (OR 1.86) were associated with significantly higher rates of PVT (P < 0.001 for all). The unadjusted odds ratios of PanVeWAS on the case-control matching and adjusted odds ratios of two models on the overall cohort are listed. Note that "NA" exists in model 2 because patients with known prior pancreatic diseases were not included in this study. The statistically significant features under Bonferroni correction are marked *** (P-value < 0.0001), ** (P-value < 0.001), * (P-value < 0.01), and + (P-value < 0.05).

Conclusion: PVT in AP is associated with a significantly higher risk of death, AKI, shock, and need for mechanical ventilation. Male gender, older age, whites, and alcoholic pancreatitis is associated with higher risk of PVT in AP patient. Further research is needed to determine the influence of disease activity and risk mitigation strategies in this patient population.