Parkview Health Parkview Health Research Repository

Pharmacy Residency

Pharmacy Research

2018

Impact of rapid identification of gram negative blood cultures in a community hospital system

Carley Thompson PharmD

Follow this and additional works at: https://researchrepository.parkviewhealth.org/pharmresidency
Part of the Pharmacy and Pharmaceutical Sciences Commons

Impact of Rapid Identification of Gram Negative Blood Cultures in a Community Hospital System

Carley Thompson, PharmD PGY1 Pharmacy Resident Parkview Health Fort Wayne, Indiana

The speaker has no actual or potential conflict of interest in relation to this presentation

Blood Culture Identification (BCID)

- Rapid polymerase chain reaction (PCR)
- Technology identifies select pathogens and resistance genes
- Multiple versions of this technology are utilized across the country
- Results within 1-3 hours of testing
- Important tool for antimicrobial stewardship (AMS) teams

Rapid PCR BCID at Parkview

- Gram negative pathogens identified:
 - Escherichia coli
 - Klebsiella pneumoniae
 - Pseudomonas aeruginosa
 - Enterobacter cloacae complex
 Neisseria meningitides
 - Enterobacteriaceae
- Gram negative resistance gene identified:
 - Klebsiella pneumoniae carbapenemase (KPC) gene
- Does not provide susceptibilities or MIC values

MIC = minimum inhibitory concentration

Blood Culture Identification Panel. Biofire website: http://www.biofiredx.com/products/the-filmarray-panels/.

- Proteus spp.
- Acinetobacter spp.
- Haemophilus influenzae •
- Serratia marcescens

Rapid PCR BCID at Parkview

- Integrated at Parkview Health in November 2015
- Providers are alerted of gram stain results while awaiting PCR
- Pharmacy notified 24/7 of all rapid PCR BCID results for adequate coverage and recommend if needed
- Results then sent to AMS pharmacists to evaluate for deescalation (Monday–Friday, day shift)

Assessment Question #1

Which of the following best describes the capabilities of rapid PCR blood culture identification technology for gram negative bacteremia?

- A. Identifies all gram negative species
- B. Recognizes select antimicrobial resistance genes
- C. Identifies antimicrobial susceptibility and MIC values
- D. Replaces the need for traditional blood cultures

McVane SH, Nolte FS.

- Conducted at an academic hospital in 2015
- Gram positive and gram negative bloodstream infections
- Control, AMS, and rapid PCR BCID plus AMS
- 364 subjects
- Results
 - Improved time to first de-escalation
 - No statistical difference in cost, length of stay, or mortality

McVane SH, Nolte FS. Journal of Clinical Microbiology. 2016.

Box MJ, et al.

- Conducted at a community-based hospital system in 2014
- Gram positive bloodstream infections only
- Control vs. rapid PCR BCID, both utilized AMS
- 167 subjects
- Results
 - Improved time to targeted therapy
 - Decrease in median length of stay
 - Decrease in median total direct variable costs

Assessment Question #2

Hospitals that utilize rapid PCR blood culture testing in conjunction with antimicrobial stewardship programs can:

- A. Increase time to de-escalation of antibiotic therapy
- B. Decrease overall mortality
- C. Increase overall cost for the patient

D. Improve time to targeted therapy

Impact of Rapid Identification of Gram Negative Blood Cultures in a Community Hospital System

Parkview Health

- 2 hospitals located in Allen County, Indiana
 - Parkview Regional Medical Center
 - Parkview Randallia
- 5 community hospitals in the surrounding counties

Study Purpose

- To evaluate the impact of rapid PCR BCID on the deescalation of antibiotic therapy in patients with gram negative bacteremia in multiple community hospitals
- Limited gram negative literature
- Previous resident conducted a study evaluating impact of rapid PCR BCID on coagulase negative Staphylococcus

Design

- Retrospective chart review
- Approved by Institutional Review Board

Inclusion Criteria

- <u>></u> 18 years old
- Positive blood culture with gram negative bacteria
- Admission to Parkview Health hospital
- Note: If there were multiple gram negative bacteremia admissions, only the first admission was evaluated

Exclusion Criteria

- Hospice
- Polymicrobial bacteremia
- Immunocompromised
 - Neutropenic
 - Transplant patients
 - Immunosuppressants
- Not receiving gram negative coverage at time blood culture result

- Immunosuppressants
 - Monoclonal antibodies
 - Chemotherapy
 - Chronic steroids

Outcomes

Primary Outcomes

- Difference in time to first de-escalation
 - Removal of a single agent <u>or</u> reduction in the spectrum of activity
- Difference in time to targeted therapy
 - De-escalation to antibiotic with the narrowest spectrum of activity appropriate for the pathogen

Outcomes

Secondary Outcomes

- Incidence of first de-escalation
- Incidence of gram-positive removal
- Incidence of targeted therapy
- Difference in time to removal of gram-positive coverage
- Intensive care unit length of stay
- Hospital length of stay
- Survival
- Percent de-escalation recommended by pharmacy

Statistical Analysis

- α = 0.05
- Primary outcomes
 - Mann-Whitney U Test
- Secondary outcomes and baseline characteristics
 - Chi square
 - Student's t test

Subjects

Baseline Characteristics

	Control Group (<i>n</i> = 147)	Study Group (<i>n</i> = 148)	<i>P</i> -value
Age, mean (SD)	66.7 (17)	67.3 (16.7)	0.72
Sex, male, <i>n</i> (%)	56 (37.8)	60 (40.8)	0.60
Weight, kg, median (IQR)	80.4 (67.6, 95.3)	83 (68.9, 105.8)	0.10
Antibiotic Allergy, n (%)	46 (31)	50 (34)	0.59
Hospital Location, <i>n</i> (%)			0.86
Allen County	121 (81.8)	119 (81)	
Non-Allen County	26 (18.2)	29 (19)	

Baseline Characteristics

Baseline Characteristics

Bacteria Identified	Control Group (<i>n</i> = 147)	Study Group (<i>n</i> = 148)
Escherichia coli	95 (64.6)	101 (68.2)
Klebsiella pneumoniae	25 (17)	22 (14.9)
Proteus spp.	13 (8.8)	5 (3.4)
Pseudomonas aeruginosa	8 (5.4)	6 (4)
Enterobacter cloacae	3 (2)	10 (6.8)
Serratia marcescens	3 (2)	3 (2)
Haemophilus influenzae	0 (0)	1 (0.7)

Reported *n*, percent

Primary Outcomes

	Control Group <i>n</i> =102	Study Group <i>n</i> =119	Difference	<i>P-</i> value
Time to First De-escalation, days, median (IQR)	1.63 (0.51, 2.47)	1.58 (0.73, 2.46)	0.04 (0.96 hr)	0.92

	Control Group <i>n</i> =95	Study Group <i>n</i> =115	Difference	<i>P</i> - value
Time to Targeted Therapy,	2.60	2.65	0.05	0.68
days, median (IQR)	(1.95, 3.76)	(1.84, 3.89)	(1.2 hr)	

Secondary Outcomes

	Control Group	Study Group	<i>P</i> -value
Incidence of First De-escalation, <i>n</i> (%)	102 (69.4)	119 (80.4)	0.03
Incidence of Gram-Positive Removal, <i>n</i> (%)	47 (32)	55 (37.2)	0.35
Incidence of Targeted Therapy, <i>n</i> (%)	95 (64.6)	115 (77.7)	0.42
Time to Gram-Positive Removal, days (hr), median	1.2 (28.8)	0.92 (22.1)	0.13

Secondary Outcomes

	Control Group	Study Group	<i>P-</i> value
ICU Length of Stay, median (IQR)	3.19 (2.1, 5.1)	3.15 (1.6, 4.3)	0.93
Hospital Length of Stay, median (IQR)	4.94 (3.2, 7.8)	4.99 (3.4, 7)	0.90
Survival, <i>n</i> (%)	143 (97.3)	146 (98.6)	0.45
Pharmacist Intervention, <i>n</i> (%)	19 (13.3)	79 (52.7)	<0.001

Conclusions

- Rapid PCR technology did not have a significant effect on time to first de-escalation or time to targeted therapy
 - 52 total subjects were already receiving targeted therapy, 33 in the control group and 19 in the study group
- Rapid PCR technology resulted in a clinically significant decrease in time to removal of gram positive coverage
- Rapid PCR implementation increased opportunities for pharmacist recommendations

Discussion

- Primary etiology of gram-negative bacteremia was UTI, where presentation may have influenced empiric therapy
- Gram-negative rapid PCR BCID has limited resistance identification, which can restrict the ability to de-escalate
- The current protocol encourages appropriate initial coverage and not de-escalation of therapy
- AMS pharmacist coverage was limited to 40 hours/week

Limitations

- Retrospective chart review
- Did not account for the other benefit of rapid PCR BCID – addition of initial coverage
- Study stopped in the Spring of 2017 and physicians may be getting more comfortable with the technology

Future Direction

- Education of practitioners on:
 - The benefits of rapid PCR BCID technology
 - Regional *E. coli* susceptibility profile
- Make local antibiogram more easily accessible with an electronic version
- Publication

Acknowledgements

- Michele Swihart, PharmD, BCPS AQ-ID
- Timothy Johnston, PharmD, BCPS, BCCCP
- Kassandra Foellinger, PharmD
- Robert Beckett, PharmD, BCPS

References

- Ward C, Stocker K, Begum J, Wade P. Performance evaluation of the Verigene (nanosphere) and FilmArray (BioFire) molecular assays for identification of causative organisms in bacterial bloodstream infections. *Eur J Clin Microbiol Infect Dis*. 2015;34:487-496. doi: 10.1007/s10096-014-2252-2.
- Blood Culture Identification Panel. Biofire website: <u>http://www.biofiredx.com/products/the-filmarray-panels/</u>. Accessed: August 27, 2017.
- MacVane SH, Nolte FS. Benefits of adding a rapid PCR-based blood culture identification panel to an established antimicrobial stewardship program. *Journal of Clinical Microbiology*. 2016; 54(10):2455-2463. doi: 10.1128/JCM.00996-16.
- Box MJ, Sullivan EL, Ortwine KN, et al. Outcomes of rapid identification for gram-positive bacteremia in combination with antibiotic stewardship at a community-based hospital system. *Pharmacotherapy*. 2015;35(3):269-276. doi: 10.1002/phar.1557.

Impact of Rapid Identification of Gram Negative Blood Cultures in a Community Hospital System

Carley Thompson, PharmD carley.thompson@parkview.com PGY1 Pharmacy Resident Parkview Health Fort Wayne, Indiana

